自然言語処理
Online ISSN : 2185-8314
Print ISSN : 1340-7619
ISSN-L : 1340-7619
一般論文
疑似正解データを活用したニューラル修辞構造解析
小林 尚輝平尾 努上垣外 英剛奥村 学永田 昌明
著者情報
ジャーナル フリー

2022 年 29 巻 3 号 p. 875-900

詳細
抄録

修辞構造解析ではニューラルネットワークなどの識別器を用いた解析器を教師あり学習により学習する.しかし,現存の最大規模のコーパスである RST-DT は 385 文書しかなく,ニューラルネットワークを学習するに十分な量とは言い難い.このような学習データの不足は,クラス数が多く頻度に偏りのある修辞関係ラベルの推定において性能低下の原因となる.そこで,本論文では自動的に修辞構造を付与した疑似正解データセットを利用したニューラル修辞構造解析手法を提案する.疑似正解データセットは複数の解析器により得られた修辞構造木の間で共通する部分木とし,ニューラル修辞構造解析器の事前学習に利用し,人手で作成した正解データを用いて解析器を追加学習する.RST-DT コーパスを用いた実験では,提案手法は OriginalParseval による核性と修辞関係の評価においてそれぞれ micro-F1 で 64.7,54.1 を達成した.

著者関連情報
© 2022 一般社団法人 言語処理学会
前の記事 次の記事
feedback
Top