自然言語処理
Online ISSN : 2185-8314
Print ISSN : 1340-7619
ISSN-L : 1340-7619
一般論文(査読有)
LATTE: Lattice ATTentive Encoding for Character-based Word Segmentation
Thodsaporn Chay-intrHidetaka KamigaitoKotaro FunakoshiManabu Okumura
著者情報
ジャーナル フリー

2023 年 30 巻 2 号 p. 456-488

詳細
抄録

A character sequence comprises at least one or more segmentation alternatives. This can be considered segmentation ambiguity and may weaken segmentation performance in word segmentation. Proper handling of such ambiguity lessens ambiguous decisions on word boundaries. Previous works have achieved remarkable segmentation performance and alleviated the ambiguity problem by incorporating the lattice, owing to its ability to capture segmentation alternatives, along with graph-based and pre-trained models. However, multiple granularity information, including character and word, in a lattice that encodes with such models may not be attentively exploited. To strengthen multi-granularity representations in a lattice, we propose the Lattice ATTentive Encoding (LATTE) method for character-based word segmentation. Our model employs the lattice structure to handle segmentation alternatives and utilizes graph neural networks along with an attention mechanism to attentively extract multi-granularity representation from the lattice for complementing character representations. Our experimental results demonstrated improvements in segmentation performance on the BCCWJ, CTB6, and BEST2010 datasets in three languages, particularly Japanese, Chinese, and Thai.

著者関連情報
© 2023 The Association for Natural Language Processing
前の記事 次の記事
feedback
Top