Journal of Nuclear Science and Technology
Online ISSN : 1881-1248
Print ISSN : 0022-3131
Numerical Analysis of Hydrogen Isotope Separation Characteristics in Improved Dual Temperature Exchange Reaction System between Water and Hydrogen Gas
Yamato ASAKURA
著者情報
ジャーナル フリー

1983 年 20 巻 5 号 p. 422-432

詳細
抄録

A dual temperature hydrogen isotopic exchange reaction system between water and hydrogen gas is numerically analyzed. The system has two features; high efficiency of isotope exchange reaction and operation under atmospheric pressure. To achieve them, the low temperature section of the system is composed of water mist and hydrogen gas co-current reactor units. For the high temperature section, a multistage-type reactor, in which a bubble plate, superheater and catalyst bed are alternatively arranged, is applied.
From a material balance between these reactors, enrichment and decontamination factors for the system are expressed as functions of seven parameters : unit number of the low temperature co-current reactor (X) ; stage number of the high temperature section (Y) ; flow ratio of tritium enriched water to decontaminated water (P/W), flow ratio of feed water to hydrogen gas (F/G) ; reaction temperatures of the low and high temperature sec-tions (Tc, Th) ; and bubble plate temperature (Tb). Numerical calculations show that enrich-ment factor depends remarkably on F/G and Tb as well as X and Y.
In order to understand the separation characteristics visually, the McCabe-Thiele diagrams for the present system are drawn and compared with the results calculated.

著者関連情報

この記事は最新の被引用情報を取得できません。

© the Atomic Energy Society of Japan
前の記事 次の記事
feedback
Top