Journal of Nutritional Science and Vitaminology
Online ISSN : 1881-7742
Print ISSN : 0301-4800
ISSN-L : 0301-4800
Regular Paper
Low-Dose Daily Intake of Vitamin K2 (Menaquinone-7) Improves Osteocalcin γ-Carboxylation: A Double-Blind, Randomized Controlled Trials
Naoko INABAToshiro SATOTakatoshi YAMASHITA
Author information
JOURNALS FREE ACCESS

2015 Volume 61 Issue 6 Pages 471-480

Details
Abstract

Vitamin K is essential for bone health, but the effects of low-dose vitamin K intake in Japanese subjects remain unclear. We investigated the effective minimum daily menaquinone-7 dose for improving osteocalcin γ-carboxylation. Study 1 was a double-blind, randomized controlled dose-finding trial; 60 postmenopausal women aged 50-69 y were allocated to one of four dosage group and consumed 0, 50, 100, or 200 μg menaquinone-7 daily for 4 wk, respectively, with a controlled diet in accordance with recommended daily intakes for 2010 in Japan. Study 2 was a double-blind, randomized placebo-controlled trial based on the results of Study 1; 120 subjects aged 20-69 y were allocated to the placebo or MK-7 group and consumed 0 or 100 μg menaquinone-7 daily for 12 wk, respectively. In both studies, circulating carboxylated osteocalcin and undercarboxylated osteocalcin were measured. The carboxylated osteocalcin/undercarboxylated osteocalcin ratio decreased significantly from baseline in the 0 μg menaquinone-7 group, in which subjects consumed the recommended daily intake of vitamin K with vitamin K1 and menaquinone-4 (Study 1). Menaquinone-7 increased the carboxylated osteocalcin/undercarboxylated osteocalcin ratio dose dependently, and significant effects were observed in both the 100 and 200 μg groups compared with the 0 μg group. Undercarboxylated osteocalcin concentrations decreased significantly, and the carboxylated osteocalcin/undercarboxylated osteocalcin ratio increased significantly in the 100 μg menaquinone-7 group compared with the placebo group (Study 2). Daily menaquinone-7 intake ≥100 μg was suggested to improve osteocalcin γ-carboxylation.

Information related to the author
© 2015 by the Center for Academic Publications Japan
Previous article Next article
feedback
Top