日本オペレーションズ・リサーチ学会論文誌
Online ISSN : 2188-8299
Print ISSN : 0453-4514
ISSN-L : 0453-4514
ON POLYHEDRAL APPROXIMATION OF L-CONVEX AND M-CONVEX FUNCTIONS
Kazuo Murota
著者情報
ジャーナル フリー

2015 年 58 巻 3 号 p. 291-305

詳細
抄録
In discrete convex analysis, L-convexity and M-convexity are defined for functions in both discrete and continuous variables. Polyhedral L-/M-convex functions connect discrete and continuous versions. Specifically, polyhedral L-/M-convex functions with certain integrality can be identified with discrete versions. Here we show another role of polyhedral L-/M-convex functions: every closed L-/M-convex function in continuous variables can be approximated by polyhedral L-/M-convex functions, uniformly on every compact set. The proof relies on L-M conjugacy under the Legendre-Fenchel transformation.
著者関連情報
© 2015 The Operations Research Society of Japan
前の記事
feedback
Top