Abstract
In the present study, we evaluated the ability of lectin from Talisia esculenta (TEL) and a protein from Labramia bojeri seeds (Labramin) to inhibit adherence of microorganisms and exert antimicrobial effects. The minimum inhibitory and bactericidal concentrations of these proteins were determined using 5 species of bacteria: Streptococcus mutans UA159, Streptococcus sobrinus 6715, Streptococcus sanguinis ATCC10556, Streptococcus mitis ATCC903 and Streptococcus oralis PB182. In addition, an adherence assay was performed using these 5 bacterial species and sterile polystyrene microtiter plates coated with human saliva. Filtered protein solutions (6.25 to 100 μg/ml) were added to saliva-coated plates, and the plates were then incubated for 1 h at 37°C. After incubation, the plates were washed, and a bacterial suspension (106 CFU/ml) was then transferred to each plate, followed by incubation at 37°C for 1 h (10% CO2). Adherence of bacteria to the acquired pellicle was visualized by staining with crystal violet, and absorbance was measured using a plate reader at 575 nm. Neither Labramin nor TEL, at any of the concentrations used, inhibited growth of any of the microorganisms. However, Labramin inhibited adherence of S. mutans and S. sobrinus. The present results indicate that Labramin is potentially useful as a biofilm-inhibiting drug. (J. Oral Sci. 49, 141-145, 2007)