Journal of Oral Science
Online ISSN : 1880-4926
Print ISSN : 1343-4934
ISSN-L : 1343-4934
Original Article
Use of liquid-based cytology samples reveals genomic instability and cell death in patients undergoing orthodontic treatment
Iris Carrillo-NoviaEdith Lara-CarrilloOlivia Torres-BugarinAdriana A. Morales-ValenzuelaElías N. Salmerón-ValdésWael Hegazy-HassanUlises Velázquez-EnríquezVíctor H. Toral-Rizo
Author information
JOURNAL OPEN ACCESS

2023 Volume 65 Issue 1 Pages 24-28

Details
Abstract

Purpose: To examine the use of liquid-based exfoliative cytology to determine the presence of genomic instability and cell death in the oral mucosa of patients with orthodontic appliances.

Methods: Fifty-four oral mucosa samples were collected from 18 patients and divided into three stages: T0, before fixation of orthodontic appliances; T1, 25 days after appliance fixation; T2, 90 days after appliance fixation. All samples were Papanicolaou-stained and observed by microscopy (1,000 cells/sample) to ascertain the frequency of micronucleated cells (MN) and nuclear abnormalities (nuclear buds (NB), binucleated (BN), condensed chromatin (CC), karyorrhexis (KR), and karyolysis (KL)). Differences were analyzed statistically using the Mann-Whitney, Wilcoxon, Kruskal-Wallis and chi-squared tests.

Results: After placement of orthodontic appliances, significant differences were observed for genomic instability biomarkers (MN and NB) and cell death (CC, KR and KL) (P < 0.05). Female patients and older patients exhibited a higher frequency of MN.

Conclusion: Liquid-based cytology has revealed that orthodontic appliances induce genomic instability and cell death in epithelial tissue of the oral mucosa, facilitating sample preservation and yielding more than one preparation per sample. Future studies should investigate whether such cell damage can be reversed through cell repair or whether cell alterations evolve and lead to disease.

Content from these authors
© 2023 by Nihon University School of Dentistry

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top