Journal of PHYSIOLOGICAL ANTHROPOLOGY and Applied Human Science
Online ISSN : 1347-5355
Print ISSN : 1345-3475
ISSN-L : 1345-3475
RAPID COMMUNICATIONS
Effect of Fluid Force on Vascular Cell Function
Susumu KudoRyuhei YamaguchiMariko IkedaKazuo Tanishita
Author information
JOURNAL FREE ACCESS

2005 Volume 24 Issue 4 Pages 459-461

Details
Abstract
Endothelial cells (ECs) that line the inner surface of blood vessels are continuously exposed to fluid frictional force (shear stress) induced by blood flow, and shear stress affects the intracellular calcium ([Ca2+]i), which initiates cellular responses. Here, we studied the effect of long-term exposure of shear stress on [Ca2+]i responses in cultured ECs by using a confocal laser microscope and calcium indicator. At the initiation of shear stress of 20 dyn/cm2 (0 hr), 27% of the cells exhibited [Ca2+]i responses. This percentage gradually decreased with increasing exposure time, reaching about 4% after 24 hr of exposure. These data indicate that long-term shear-stress exposure affects [Ca2+]i responses in cultured ECs. Furthermore, we studied the effect of magnitude of shear stress on macromolecule uptake. For the low shear-stress, the uptake was enhanced, whereas the uptake was inhibited for higher shear-stress.
Content from these authors
© 2005 Japan Society of Physiological Anthropology
Previous article Next article
feedback
Top