The Journal of Physical Fitness and Sports Medicine
Online ISSN : 2186-8123
Print ISSN : 2186-8131
ISSN-L : 2186-8131
Review Article
Mechanisms of exercise-induced muscle damage and fatigue: Intracellular calcium accumulation
Yutaka KanoTakashi SonobeTadakatsu InagakiMizuki SudoDavid C Poole
著者情報
ジャーナル フリー

2012 年 1 巻 3 号 p. 505-512

詳細
抄録

Contraction-induced compromise of muscle function and, in the extreme, muscle damage has been linked to loss of Ca2+ homeostasis and resultant sustained elevation of intracellular Ca2+ ([Ca2+]i). Against a background of in vitro approaches, a novel in vivo model permits investigation of the impact of different contraction types (e.g., isometric, ISO; eccentric, ECC) on [Ca2+]i accumulation profiles. [Ca2+]i elevation of ECC-contracted muscle is more rapid and greater in magnitude compared to ISO. Stretch-activated channels (SAC) are responsible, in large part, for this ECC contractions-induced [Ca2+]i elevation. Transient Ca2+ accumulation in the cytosol incurs loss of force production, whereas continuous high levels of [Ca2+]i, especially following ECC contractions, lead to muscle damage, including disrupted sarcomeres and membranes, and proceed, subsequently, to muscle regeneration via apoptosis and necrosis.

著者関連情報
© 2012 The Japanese Society of Physical Fitness and Sports Medicine
前の記事 次の記事
feedback
Top