The Journal of Physical Fitness and Sports Medicine
Online ISSN : 2186-8123
Print ISSN : 2186-8131
ISSN-L : 2186-8131
Regular Article
Proposal and validation of mathematical model for resistance training
Sho HatanakaNaokata Ishii
Author information
JOURNALS OPEN ACCESS

2021 Volume 10 Issue 2 Pages 109-118

Details
Abstract

A set of mathematical models for resistance training (RT model) with repeated dynamic and voluntary activations of knee extensor muscles was proposed and validated. RT model predicts muscle activity, fatigue and recovery, and can be used to predict the mechanical impulses identified in different muscle fiber types. Several resistance training program variables (e.g. load, velocity, number of sets, and duration of rest intervals) were addressed in this study. Experimental data from six subjects were taken under several different training protocols. For the protocols studied, the model precisely predicted the maximum number of repetitions during knee extension resistance exercise (R2 = 0.87). This study demonstrates the applicability of the first simple mathematical model for voluntary dynamic exercise of knee extensor muscles. The developed model calculates the mechanical impulse of fast twitch fiber for the selected protocols. For instance, the model shows high intensity training tends to induce more fast-twitch fiber recruitment than that in low intensity training in the case of non-failure. This model is expected to help in understanding how impulses of different fiber types contribute and affect training.

Information related to the author
© 2021 The Japanese Society of Physical Fitness and Sports Medicine

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top