2018 Volume 62 Issue 2 Pages 258-263
Purpose: The aims were to analyze stiffness, ultimate force, and failure modes of a 2-piece zirconium dioxide (ZrO2) implant system.
Methods: Eleven 2-piece ZrO2 implants, each mounted with ZrO2 abutments plus bonded monolithic lithium disilicate (LS2) restorations, were grouped for 3.3 mm (A) and 4.1 mm (B) diameter samples. Quasi-static load was monotonically applied under a standardized test set-up (loading configuration according to DIN ISO 14801). The ultimate force was defined as the maximum force that implants are able to carry out until fracture; stiffness was measured as the maximum slope during loading. An unpaired ttest was performed between group A and B for ultimate force and stiffness (p < 0.05).
Results: Force-displacement curves revealed statistically homogenous inner-group results for all samples. Failure modes showed characteristic fractures at the neck configuration of the implants independent of the diameter. Mean stiffness was 1099 N/mm (± 192) for group A, and significantly lower compared to group B with 1630 N/mm (± 274) (p < 0.01); whereas mean ultimate force was 348 N (± 53) for group A, and significantly increased for group B with 684 N (± 29) (p < 0.0001).
Conclusions: The examined 2-piece ZrO2 implant system mounted to LS2-restorations seems to be a stable unit under in-vitro conditions with mechanical properties compared to loading capacity of physiological force. The metal-free implant reconstructions demonstrated high stiffness and ultimate force under quasi-static load for single tooth replacement under consideration of the dental indication of narrow and standard diameter implants.
This article cannot obtain the latest cited-by information.