Journal of the Physical Society of Japan
Online ISSN : 1347-4073
Print ISSN : 0031-9015
ISSN-L : 0031-9015
Scaling Law of the Mean Laminar Length in Intermittent Chaos
Takeshi KawabeYoshiro Kondo
著者情報
ジャーナル 認証あり

1996 年 65 巻 4 号 p. 879-882

詳細
抄録
The mean laminar length of intermittency generated by the dynamical equation xn+1=(1+ε)xn+xnz obeys the scaling law ‹ N › ∝ ε, where γ is related to the reinjection probability through a reinjection mapping function (1-x)^m and is approximated by γ=1-1/m(z-1). This result is ascertained by numerical simulations, and for m=1 it is in agreement with the result for the random uniform reinjection probability in type-III intermittency. It is also used not only to classify the intermittent chaos but also to determine the scaling law for the mean laminar length from the analyses of the return map which is experimentally or theoretically provided.
著者関連情報

この記事は最新の被引用情報を取得できません。

© The Physical Society of Japan 1996
前の記事 次の記事
feedback
Top