Journal of the Physical Society of Japan
Online ISSN : 1347-4073
Print ISSN : 0031-9015
ISSN-L : 0031-9015
Extension of von Kármán’s Transonic Similarity Rule
Isao Imai
著者情報
ジャーナル 認証あり

1954 年 9 巻 1 号 p. 103-108

詳細
抄録
An attempt is made to extend von Kármán’s transonic similarity theory so as to cover the whole range of Mach number from subsonic to supersonic. First, the equations for the two-dimensional compressible flow past a slender body are reduced to
\frac∂G∂\barζ=B\left(\frac∂φ1∂ξ\ ight)2 (1) or \frac∂2φ2∂η2=4B\frac∂φ2∂ξ\frac∂2φ2∂ξ2 (2)
by assuming that the perturbation velocity is small of order ε and neglecting small quantities of O3). Here we have written Φ=U(x+φ), Ψ=U(y+Ψ), ζ=ξ+iη=x+iμy, Ψ=μχ, φ+iχ=A+iχ1)=AG, φ12+ξ⁄4B, BA⁄4, μ=\sqrt1−M2, ν=4M2[1+(γ+1)M2⁄4μ2] where Φ is the stream function. U and M are respectively the free stream velocity and Mach number, γ is the ratio of specific heats, A is a constant of order O(ε), and G(ζ,\barζ), φ1(ξ,η), χ1(ξ,η) are O(1).
Then, it is shown that B=O(t) for M\ eweq1, and that (ν⁄μ)t is an appropriate parameter for M\fallingdotseq1, where t is the thickness ratio of the body. For the ease M\ eweq1, either subsonic or supersonic, the procedure of successive approximation can be applied to Eq. (1). It is to be noted that Eq. (2) is exact to the order O2) in contrast to the fact that the similar equation in the usual transonic approximation theory is correct only to the order O(ε). Hence it is suggested that the parameter (ν⁄μ)t may be used with advantage in place of the usual transonic parameter (γ+1)t⁄μ3 or (γ+1)t⁄(1−M2)3⁄2.
Finally, Liepmann and Bryson’s experimental data on the transonic flow past wedge sections are analyzed using the parameter (ν⁄μ)t.
著者関連情報

この記事は最新の被引用情報を取得できません。

© THE PHYSICAL SOCIETY OF JAPAN
前の記事 次の記事
feedback
Top