抄録
The aim of this paper is to show that the methods discussed in Part I to estimate the zeros of linear homogeneous forms with respect to Hankel function and its derivative is applicable also to the case of higher than linear forms. As a typical form we take the bilinear form
f2(ν)≡\varphi1(ν2,a,m)Hν(2)(a)Hν(2)(ma)+\varphi2(ν2,a,m)dHν(2)(a)⁄da·Hν(2)(ma)
+\varphi3(ν2,a,m)Hν(2)(a)dHν(2)(ma)⁄d(ma)
+\varphi4(ν2,a,m)dHν(2)(a)⁄da·dHν(2)(ma)⁄d(ma)
qua function of ν. As an example we discuss in detail the form such that
\varphi1≡1−\frac4ν2a2+\frac4ν2(ν2−9⁄4)a4,\varphi2≡\frac2a\left(1+\fracν2−9⁄4a2\
ight),
\varphi3≡\frac4ma\left(1−\fracν2−9⁄42a2\
ight),\varphi4≡−\frac4ma2\left(ν2−\frac94\
ight)
with m<1⁄\sqrt2, which appears actually in the case of the diffraction of elastic waves by a sphere. This is shown to have as zeros, besides the one whose real part is somewhat greater than a and imaginary part =−O(ae−a), those such as
ν=a\bigg[1+\left(\frac3ρa\
ight)2⁄3exp\left(\frac53πi\
ight)+\frac43ρ\sqrt1−m2\frac3ρa+\frac11204⁄3\left(\frac3ρa\
ight)exp\left(\frac43πi\
ight)
−\left{−\frac176+\frac12\frac11−m2+\frac163(1−m2)\
ight}\frac43ρ\sqrt1−m2\left(\frac3ρa\
ight)5⁄3exp\left(\frac23πi\
ight)
+\left{\frac12800+\frac17170ρ2−\frac809ρ2(1−m2)−\frac29ρ2\frac11−m2+\frac1289ρ2(1−m2)2\
ight}\left(\frac3ρa\
ight)2+···\bigg]
and ν=ma\bigg[1+\frac12\left(\frac3ρma\
ight)2⁄3exp\left(\frac53πi\
ight)−\frac4m33ρ\frac(1−m2)1⁄2(2m2−1)2\left(\frac3ρma\
ight)exp\left(\fracπ2i\
ight)
+\frac1120\left(\frac3ρma\
ight)4⁄3exp\left(\frac43πi\
ight)−\bigg{\frac16−\frac2m2+12m2−1−\frac12\fracm21−m2
−\frac16m23\frac(1−m2)(2m2−1)4\bigg}\frac4m33ρ\frac(1−m2)1⁄2(2m2−1)2\left(\frac3ρma\
ight)5⁄3exp\left(\fracπ6i\
ight)
+\bigg{\frac12800−\frac1630ρ2−\bigg(\frac12−2·\frac2m2+12m2−1−\fracm21−m2−\frac1m2+\frac18m4
+\frac12m4·\frac(<