J-STAGE Home  >  Publications - Top  > Bibliographic Information

Journal of Reproduction and Development
Vol. 50 (2004) No. 5 October P 493-514



Review Article

More than 99% of follicles undergo a degenerative process known as “atresia”, in mammalian ovaries, and only a few follicles ovulate during ovarian follicular development. We have investigated the molecular mechanism of selective follicular atresia in mammalian ovaries, and have reported that follicular selection dominantly depends on granulosa cell apoptosis. However, we have little knowledge of the molecular mechanisms that control apoptotic cell death in granulosa cells during follicle selection. To date, at least five cell death ligand-receptor systems [tumor necrosis factor (TNF)α and receptors, Fas (also called APO-1/CD95) ligand and receptors, TNF-related apoptosis-inducing ligand (TRAIL; also called APO-2) and receptors, APO-3 ligand and receptors, and PFG-5 ligand and receptors] have been reported in granulosa cells of porcine ovaries. Some cell death ligand-receptor systems have “decoy” receptors, which act as inhibitors of cell death ligand-induced apoptosis in granulosa cells. Moreover, we showed that the porcine granulosa cell is a type II apoptotic cell, which has the mitochondrion-dependent apoptosis-signaling pathway. Briefly, the cell death receptor-mediated apoptosis signaling pathway in granulosa cells has been suggested to be as follows. (1) A cell death ligand binds to the extracellular domain of a cell death receptor, which contains an intracellular death domain (DD). (2) The intracellular DD of the cell death receptor interacts with the DD of the adaptor protein (Fas-associated death domain: FADD) through a homophilic DD interaction. (3) FADD activates an initiator caspase (procaspase-8; also called FLICE), which is a bipartite molecule, containing an N-terminal death effector domain (DED) and a C-terminal DD. (4) Procaspase-8 begins auto-proteolytic cleavage and activation. (5) The auto-activated caspase-8 cleaves Bid protein. (6) The truncated Bid releases cytochrome cfrom mitochondrion. (7) Cytochrome c and ATP-dependent oligimerization of apoptotic protease-activating factor-1 (Apaf-1) allows recruitment of procaspase-9 into the apoptosome complex. Activation of procaspase-9 is mediated by means of a conformational change. (8) The activated caspase-9 cleaves downstream effector caspases (caspase-3). (9) Finally, apoptosis is induced. Recently, we found two intracellular inhibitor proteins [cellular FLICE-like inhibitory protein short form (cFLIPS) and long form (cFLIPL)], which were strongly expressed in granulosa cells, and they may act as anti-apoptotic/survival factors. Further in vivo and in vitro studies will elucidate the largely unknown molecular mechanisms, e. g. which cell death ligand-receptor system is the dominant factor controling the granulosa cell apoptosis of selective follicular atresia in mammalian ovaries. If we could elucidate the molecular mechanism of granulosa cell apoptosis (follicular selection), we could accurately diagnose the healthy ovulating follicles and precisely evaluate the oocyte quality. We hope that the mechanism will be clarified and lead to an integrated understanding of the regulation mechanism.

Copyright © 2004 Society for Reproduction and Development

Article Tools

Share this Article