Journal of Reproduction and Development
Online ISSN : 1348-4400
Print ISSN : 0916-8818
ISSN-L : 0916-8818
Original Articles
H3S10 Phosphorylation Marks Constitutive Heterochromatin During Interphase in Early Mouse Embryos Until the 4-Cell Stage
Karlla RIBEIRO-MASONClaire BOULESTEIXRenaud FLEUROTTiphaine AGUIRRE-LAVINPierre ADENOTLaurence GALLPascale DEBEYNathalie BEAUJEAN
Author information
JOURNAL FREE ACCESS

2012 Volume 58 Issue 4 Pages 467-475

Details
Abstract

Phosphorylation of histone H3 at Ser10 (H3S10P) has been linked to a variety of cellular processes, such as chromosome condensation and gene activation/silencing. Remarkably, in mammalian somatic cells, H3S10P initiates in the pericentromeric heterochromatin during the late G2 phase, and phosphorylation spreads throughout the chromosomes arms in prophase, being maintained until the onset of anaphase when it gets dephosphorylated. Considerable studies have been carried out about H3S10P in different organisms; however, there is little information about this histone modification in mammalian embryos. We hypothesized that this epigenetic modification could also be a marker of pericentromeric heterochromatin in preimplantation embryos. We therefore followed the H3S10P distribution pattern in the G1/S and G2 phases through the entire preimplantation development in in vivo mouse embryos. We paid special attention to its localization relative to another pericentromeric heterochromatin marker, HP1β and performed immunoFISH using specific pericentromeric heterochromatin probes. Our results indicate that H3S10P presents a remarkable distribution pattern in preimplantation mouse embryos until the 4-cell stage and is a better marker of pericentromeric heterochromatin than HP1β. After the 8-cell stage, H3S10P kinetic is more similar to the somatic one, initiating during G2 in chromocenters and disappearing upon telophase. Based on these findings, we believe that H3S10P is a good marker of pericentromeric heterochromatin, especially in the late 1- and 2-cell stages as it labels both parental genomes and that it can be used to further investigate epigenetic regulation and heterochromatin mechanisms in early preimplantation embryos.

Content from these authors
© 2012 Society for Reproduction and Development

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
Previous article Next article
feedback
Top