Journal of Reproduction and Development
Online ISSN : 1348-4400
Print ISSN : 0916-8818
Original Articles
Selenium and Vitamin E Improve the In Vitro Maturation, Fertilization and Culture to Blastocyst of Porcine Oocytes
K. M. A. TAREQQuzi Sharmin AKTERM. A. M. Yahia KHANDOKERHirotada TSUJII
Author information

Volume 58 (2012) Issue 6 Pages 621-628

Download PDF (670K) Contact us

Selenium (Se) and vitamin E (Vit-E), as integral parts of antioxidant systems, play important roles for sperm and embryos in vitro. In this study, the effects of Se and Vit-E on the maturation, in vitro fertilization and culture to blastocysts of porcine oocytes and accumulation of ammonia in the culture medium during different development stages were investigated. The maturation was performed in modified tissue culture medium (mTCM)-199 supplemented with 10% (v/v) porcine follicular fluid, the fertilization medium was modified Tyrode’s albumin lactate pyruvate (mTALP), and the embryo culture medium was modified North Carolina State University (mNCSU)-23. Se in the form of sodium selenite (SS) and seleon-L-methionine (SeMet) and Vit-E at different concentrations were also used. The incorporation and oxidation of 14C(U)-glucose were assessed with a liquid scintillation counter. In this study, SeMet and SeMet+Vit-E increased oocyte maturation, fertilization and incorporation and oxidation of 14C(U)-glucose significantly (P<0.05) compared with the control and other treatments. In addition, embryo development, specifically in terms of the numbers of morulae and blastocysts, significantly increased (P<0.05) with SeMet and SeMet+Vit-E. In contrast, the accumulation of ammonia was reduced with SeMet and SeMet+Vit-E compared with other treatments. These findings indicate that SeMet and SeMet+Vit-E may play important roles in reducing the accumulation of ammonia and subsequently in increasing the rate of maturation of porcine oocytes and fertilization, as well as development of the blastocyst and utilization of glucose in in vitro maturation, fertilization and culture to blastocysts of porcine oocytes.

Information related to the author
Next article