Journal of Reproduction and Development
Online ISSN : 1348-4400
Print ISSN : 0916-8818
ISSN-L : 0916-8818

This article has now been updated. Please use the final version.

DNA fragmentation in epididymal freeze-dried ram spermatozoa impairs embryo development
Luca PALAZZESEJaime GOSÁLVEZDebora A. ANZALONEPasqualino LOIJoseph SARAGUSTY
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: 2018-033

Details
Abstract

Sperm freeze-drying is a revolutionary technique, which has been gaining prominence in recent years. The first related significant result was Wakayama and Yanagimachi’s demonstration in 1998 of the birth of healthy mouse offspring by Intracytoplasmic Sperm Injection (ICSI), using epididymal freeze-dried spermatozoa. Mouse, rat, and hamster models were the first small mammals born from lyophilized epididymal spermatozoa, whereas most other studies in this field used ejaculated spermatozoa. In this work, we applied this technique to ram epididymal spermatozoa, checking the correlation between DNA integrity and embryo development following ICSI. To do this, epididymal sperm from four rams was lyophilized in a trehalose, glucose, KCl, HEPES, and Trolox media. To evaluate DNA damage and fragmentation after rehydration, samples were processed for Sperm Chromatin Dispersion test (SCD), Two-Tailed Comet Assay, and were used for ICSI. Ram #2 had a higher rate of spermatozoa with intact DNA compared with rams #1, #3, and #4 (28% vs. 3.8%, 2.8%, and 5%, respectively) and the lowest rate of Single-Strand Breaks (SSBs) (70% vs. 95.9%, 92.6%, and 93% respectively). Ram #3 had a higher level of Double-Strand Breaks (DSBs) compared to Ram #1 (4.6% vs. 0.33%, respectively). Embryo development to the blastocyst stage following ICSI was only reached from rams whose sperm had higher level of intact DNA – Rams #2 and #4 (6%, 5/147 and 6.3%, 4/64, respectively). Definitively, the impact of sperm DNA damage on embryonic development depends on the balance between sperm DNA fragmentation extent, fragmentation type (SSBs or DSBs), and the oocyte’s repair capacity.

Graphical Abstract Fullsize Image
Graphical Abstract
Content from these authors
© 2018 Society for Reproduction and Development

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top