Abstract
Methane and hydrogen production was investigated in batch experiments of thermophilic methane and hydrogen fermentation, using domestic garbage and food processing waste classified by fat/carbohydrate balance as a base material. Methane production per unit of VS added was significantly positively correlated with fat content and negatively correlated with carbohydrate content in the substrate, and the average value of the methane production per unit of VS added from fat-rich materials was twice as large as that from carbohydrate-rich materials. By contrast, hydrogen production per unit of VS added was significantly positively correlated with carbohydrate content and negatively correlated with fat content. Principal component analysis using the results obtained in this study enable an evaluation of substrates for methane and hydrogen fermentation based on nutrient composition.