Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on Advanced Robotics in Agriculture, Forestry and Fisheries
Image Mosaicing Using Multi-Modal Images for Generation of Tomato Growth State Map
Takuya FujinagaShinsuke YasukawaBinghe LiKazuo Ishii
Author information
JOURNAL OPEN ACCESS

2018 Volume 30 Issue 2 Pages 187-197

Details
Abstract

Due to the aging and decreasing the number of workers in agriculture, the introduction of automation and precision is needed. Focusing on tomatoes, which is one of the major types of vegetables, we are engaged in the research and development of a robot that can harvest the tomatoes and manage the growth state of tomatoes. For the robot to automatically harvest tomatoes, it must be able to automatically detect harvestable tomatoes positions, and plan the harvesting motions. Furthermore, it is necessary to grasp the positions and maturity of tomatoes in the greenhouse, and to estimate their yield and harvesting period so that the robot and workers can manage the tomatoes. The purpose of this study is to generate a tomato growth state map of a cultivation lane, which consists of a row of tomatoes, aimed at achieving the automatic harvesting and the management of tomatoes in a tomato greenhouse equipped with production facilities. Information such as the positions and maturity of the tomatoes is attached to the map. As the first stage, this paper proposes a method of generating a greenhouse map (a wide-area mosaic image of a tomato cultivation lane). Using the infrared image eases a correspondence point problem of feature points when the mosaic image is generated. Distance information is used to eliminate the cultivation lane behind the targeted one as well as the background scenery, allowing the robot to focus on only those tomatoes in the targeted cultivation lane. To verify the validity of the proposed method, 70 images captured in a greenhouse were used to generate a single mosaic image from which tomatoes were detected by visual inspection.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2018 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Previous article Next article
feedback
Top