Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on Integrated Knowledge on Innovative Robot Mechanisms
Modeling and Mechanical Design of an Active-Caster Omnidirectional Mechanism with a Ball Transmission
Kosuke KatoMasayoshi Wada
Author information
JOURNAL OPEN ACCESS

2018 Volume 30 Issue 6 Pages 910-919

Details
Abstract

This paper presents kinematic and static analyses of an active-caster robotic drive with a single-layer ball transmission (ACROBAT-S). On the basis of the analyses, a single-wheel prototype is designed, and fundamental experiments using the prototype are conducted. The proposed ACROBAT-S includes a ball transmission that transmits power to a wheel axis and steering axis of an active-caster wheel in an appropriate ratio to produce so-called “caster motion.” The power distribution is realized mechanically rather than by complicated computer control algorithms. Therefore, the angle sensor for detecting the wheel orientation, and the control calculations for coordinated control of the wheel and steering motors of a conventional system are eliminated. Thus, the proposed mechanical design, which transfers a part of the control function to the mechanism, contributes to simplifying the overall control system. The results of the analyses and experiments with a prototype confirm that the proposed active-caster mechanism, ACROBAT-S, can realize the expected omnidirectional motion with simple motor control, such as Point-To-Point control.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2018 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Previous article Next article
feedback
Top