Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Regular Papers
Low-Altitude and High-Speed Terrain Tracking Method for Lightweight AUVs
Toshihiro MakiYukiyasu NoguchiYoshinori KuranagaKotohiro MasudaTakashi SakamakiMarc HumbletYasuo Furushima
Author information
JOURNAL OPEN ACCESS

2018 Volume 30 Issue 6 Pages 971-979

Details
Abstract

This paper proposes a new method for cruising-type autonomous underwater vehicles (AUVs) to track rough seafloors at low altitudes while also maintaining a high surge velocity. Low altitudes are required for visual observation of the seafloor. The operation of AUVs at low altitudes and high surge velocities permits rapid seafloor imaging over a wide area. This method works without high-grade sensors, such as inertial navigation systems (INS), Doppler velocity logs (DVL), or multi-beam sonars, and it can be implemented in lightweight AUVs. The seafloor position is estimated based on a reflection intensity map defined on a vertical plane, using measurements from scanning sonar and basic sensors of depth, attitude, and surge velocity. Then, based on the potential method, a reference pitch angle is generated that allows the AUV to follow the seafloor at a constant altitude. This method was implemented in the AUV HATTORI, and a series of sea experiments were carried out to evaluate its performance. HATTORI (Highly Agile Terrain Tracker for Ocean Research and Investigation) is a lightweight and low-cost testbed designed for rapid and efficient imaging of rugged seafloors, such as those containing coral reefs. The vehicle succeeded in following a rocky terrain at an altitude of approximately 2 m with a surge velocity of approximately 0.8 m/s. This paper also presents the results of sea trials conducted at Ishigaki Island in 2017, where the vehicle succeeded in surveying the irregular, coral-covered seafloor.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2018 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Previous article Next article
feedback
Top