Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Regular Papers
Using Uncertain DM-Chameleon Clustering Algorithm Based on Machine Learning to Predict Landslide Hazards
Jian HuHaiwan ZhuYimin MaoCanlong ZhangTian LiangDinghui Mao
Author information
JOURNAL OPEN ACCESS

2019 Volume 31 Issue 2 Pages 329-338

Details
Abstract

Landslide hazard prediction is a difficult, time-consuming process when traditional methods are used. This paper presents a method that uses machine learning to predict landslide hazard levels automatically. Due to difficulties in obtaining and effectively processing rainfall in landslide hazard prediction, and to the existing limitation in dealing with large-scale data sets in the M-chameleon algorithm, a new method based on an uncertain DM-chameleon algorithm (developed M-chameleon) is proposed to assess the landslide susceptibility model. First, this method designs a new two-phase clustering algorithm based on M-chameleon, which effectively processes large-scale data sets. Second, the new E-H distance formula is designed by combining the Euclidean and Hausdorff distances, and this enables the new method to manage uncertain data effectively. The uncertain data model is presented at the same time to effectively quantify triggering factors. Finally, the model for predicting landslide hazards is constructed and verified using the data from the Baota district of the city of Yan’an, China. The experimental results show that the uncertain DM-chameleon algorithm of machine learning can effectively improve the accuracy of landslide prediction and has high feasibility. Furthermore, the relationships between hazard factors and landslide hazard levels can be extracted based on clustering results.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2019 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Previous article Next article
feedback
Top