Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on MEMS for Robotics and Mechatronics
A MEMS Tactile Sensor with Fingerprint-Like Array of Contactors for High Resolution Visualization of Surface Distribution of Tactile Information
Kazuki WatataniKyohei TeraoFusao ShimokawaHidekuni Takao
Author information
JOURNAL OPEN ACCESS

2020 Volume 32 Issue 2 Pages 305-314

Details
Abstract

In the present report, we have developed a tactile sensor with fingerprint-like array of contactors for obtaining the surface distribution of tactile information in high spatial resolutions. Six high resolution sensing modules of contactors with biaxial detectors were integrated in line at a pitch of 500 μm, the typical pitch of fingerprint ridges. Each sensing module independently detected the micro surface shape and locally generated frictional force on the object surfaces. Mechanical analysis of the fabricated sensors showed good sensitivities and highly linear responses. Consequently, the measured detection resolutions of surface shape and frictional force were 0.17 μm and 9.9 μN, respectively. The experimental performance evaluation of fabricated sensor was measured in the distribution of tactile information by sweeping the sensor with a yaw angle. Additionally, the 3D surface shape of weave structure and surface distribution of frictional force in a woven fabric with 0.4 mm pitch of threads in high spatial resolution was clearly visualized/observed. Moreover, the directionality of tactile information of the fabric surface distribution was successfully realized using the tactile sensor with the array of contactors by sweeping in different directions.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2020 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Previous article Next article
feedback
Top