Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on Innovative Robotics and Mechatronics Technology of Modern Passenger Cars for Zeroing Traffic Accidents
Personalized Subjective Driving Risk: Analysis and Prediction
Naren BaoAlexander CarballoChiyomi MiyajimaEijiro TakeuchiKazuya Takeda
Author information
JOURNAL OPEN ACCESS

2020 Volume 32 Issue 3 Pages 503-519

Details
Abstract

Subjective risk assessment is an important technology for enhancing driving safety, because an individual adjusts his/her driving behavior according to his/her own subjective perception of risk. This study presents a novel framework for modeling personalized subjective driving risk during expressway lane changes. The objectives of this study are twofold: (i) to use ego vehicle driving signals and surrounding vehicle locations in a data-driven and explainable approach to identify the possible influential factors of subjective risk while driving and (ii) to predict the specific individual’s subjective risk level just before a lane change. We propose the personalized subjective driving risk model, a combined framework that uses a random forest-based method optimized by genetic algorithms to analyze the influential risk factors, and uses a bidirectional long short term memory to predict subjective risk. The results demonstrate that our framework can extract individual differences of subjective risk factors, and that the identification of individualized risk factors leads to better modeling of personalized subjective driving risk.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2020 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Previous article Next article
feedback
Top