Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on Innovative Robotics and Mechatronics Technology of Modern Passenger Cars for Zeroing Traffic Accidents
Stereo Vision by Combination of Machine-Learning Techniques for Pedestrian Detection at Intersections Utilizing Surround-View Cameras
Tokihiko AkitaYuji YamauchiHironobu Fujiyoshi
Author information
JOURNAL OPEN ACCESS

2020 Volume 32 Issue 3 Pages 494-502

Details
Abstract

The frequency of pedestrian traffic accidents continues to increase in Japan. Thus, a driver assistance system is expected to reduce the number of accidents. However, it is difficult for the current environmental recognition sensors to detect crossing pedestrians when turning at intersections, owing to the field of view and the cost. We propose a pedestrian detection system that utilizes surround-view fisheye cameras with a wide field of view. The system can be realized at low cost if the fisheye cameras are already equipped. It is necessary to detect the positioning of pedestrians accurately because more precise prediction of future collision points is required at intersections. Stereo vision is suitable for this purpose. However, there are some concerns regarding realizing stereo vision using fisheye cameras due to the distortion of the lens, asynchronous capturing, and fluctuating camera postures. As a countermeasure, we propose a novel method combining various machine-learning techniques. The D-Brief with histogram of oriented gradients and normalized cross-correlation are combined by a support-vector machine for stereo matching. A random forest was adopted to discriminate the pedestrians from noise in the 3D reconstructed point cloud. We evaluated this for images of crossing pedestrians at actual intersections. A tracking rate of 96.0% was achieved as the evaluation result. It was verified that this algorithm can accurately detect a pedestrian with an average position error of 0.17 m.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2020 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Previous article Next article
feedback
Top