2024 Volume 36 Issue 2 Pages 343-352
Utilizing building information modeling (BIM) for the analysis of existing pipelines necessitates the development of a swift and precise recognition method. Deep learning-based object recognition through imagery has emerged as a potent solution for tackling various recognition tasks. However, the direct application of these models is unfeasible due to their substantial computational requirements. In this research, we introduce a lightweight encoder explicitly for pipe recognition. By optimizing the network architecture using attention mechanisms, it ensures high-precision recognition while maintaining computational efficiency. The experimental results showcased in this study underscore the efficacy of the proposed lightweight encoder and its associated networks.
This article cannot obtain the latest cited-by information.