Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on Advanced Robotic Technology and System for DX in Construction Industry
Lightweight Encoder with Attention Mechanism for Pipe Recognition Network
Yang TianXinyu LiShugen Ma
Author information
JOURNAL OPEN ACCESS

2024 Volume 36 Issue 2 Pages 343-352

Details
Abstract

Utilizing building information modeling (BIM) for the analysis of existing pipelines necessitates the development of a swift and precise recognition method. Deep learning-based object recognition through imagery has emerged as a potent solution for tackling various recognition tasks. However, the direct application of these models is unfeasible due to their substantial computational requirements. In this research, we introduce a lightweight encoder explicitly for pipe recognition. By optimizing the network architecture using attention mechanisms, it ensures high-precision recognition while maintaining computational efficiency. The experimental results showcased in this study underscore the efficacy of the proposed lightweight encoder and its associated networks.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2024 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM official website.
https://www.fujipress.jp/jrobomech/rb-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top