Abstract
This work presents a human-robot cooperative approach for infrastructure inspection. The goal is to create a robot that assists the human inspector during hammer sounding inspections that detects invisible defects under the surface of concrete by striking the surface with a hammer and listening the resulting sound. The conventional hammer sounding inspection is time-consuming, and there is no convenient way to represent exhaustively the test results. In the proposed approach, an assistant robot accurately estimates the position of the impact in real-time and creates a detailed representation of the test results. Experimental results show the process for creating the detailed inspection report. The accuracy of the human-robot cooperative approach is evaluated for a real world application. The center of the error distribution of the impact point estimation was 44[mm] from the ground-truth with 27[mm] of standard deviation.