Journal of the Robotics Society of Japan
Online ISSN : 1884-7145
Print ISSN : 0289-1824
ISSN-L : 0289-1824
Dynamic Walking on Irregular Terrain and Running on Flat Terrain of the Quadruped Using Neural Oscillator
Hiroshi KimuraSeiichi AkiyamaKazuaki Sakurama
Author information
JOURNAL FREE ACCESS

1998 Volume 16 Issue 8 Pages 1138-1145

Details
Abstract

In the present study we attempt to induce a quadruped robot to walk dynamically on irregular terrain and run on flat terrain by using a neural system model. For dynamic walking on irregular terrain, we employ a control system involving a neural oscillator network, a stretch reflex and a flexor reflex. Stable dynamic walking when obstructions to swinging legs are present is made possible by the flexor reflex and the crossed stretch reflex. A modification of the single driving input to the neural oscillator network makes it possible for the robot to walk up a step. For running on flat terrain, we combine a spring mechanism and the neural oscillator network. It became clear in this study that the matching of two oscillations by springs and the neural oscillator network is important in enabling the robot to hopping. The present study also shows that entrainment between neural oscillators causes the running gait to change from hopping to bouncing. This finding renders running fairly easy to attain in a bounce gait. It must be noticed that the flexible and robust dynamic walking on irregular terrain and the transition of the running gait are realized by the modification of a few parameters in the neural oscillator network. This finding, obtained through experiments using the quadruped called Patrush, shows the potential ability of a neural oscillator network to facilitate adaptation in dynamic walking and running.

Content from these authors
© The Robotics Society of Japan
Previous article Next article
feedback
Top