2023 Volume 31 Issue 2 Pages 140-146
Multi-degree-of-freedom (multi-DOF) spherical actuators have been developed for the fields of robotics and industrial machines. We have proposed an outer rotor type three-DOF spherical actuator that can realize a high torque density. Each coil input current is calculated using a torque generating equation based on the torque constant matrix. The permanent magnet type actuators have a problem with generating unexpected cogging torque due to various manufacturing errors. Manufacturing errors mainly mean differences between the ideal dimensions at the motor design stage and the actual dimensions in mass production. In this case, the actuator would exceed the limitations of classical proportional-integral-differential (PID) controllers. In this paper, we propose a current compensator using reinforcement learning by introducing a deep neural network through dynamic analysis and measurements on a prototype.