日本AEM学会誌
Online ISSN : 2187-9257
Print ISSN : 0919-4452
ISSN-L : 0919-4452
特集 第33回「MAGDAコンファレンス2024」in 東京
マルチモーダルCNN を用いた電気インピーダンストモグラフィ法の 空間分解能向上
金子 怜司皆川 敬哉生野 孝
著者情報
ジャーナル フリー

2025 年 33 巻 3 号 p. 300-305

詳細
抄録
We propose a multimodal CNN that reconstructs conductivity distribution images by combining features from multiple sets of potential data. A comparison with a single modal CNN, which reconstructs images from a single set of potential data, was performed. The reconstructed images were evaluated for the size and position of foreign objects. While the multimodal CNN did not show significant improvement in terms of size accuracy compared to the single modal CNN, it demonstrated superior performance in position estimation. Additionally, we examined reconstructions of polygonal objects and objects with rotation. The multimodal CNN exhibited higher resolution in capturing object shapes and rotations compared to the single modal CNN. Future work will focus on applying this method to the non-destructive inspection of building materials, beyond simulations.
著者関連情報
© 2025 日本AEM学会
前の記事 次の記事
feedback
Top