人工知能学会第二種研究会資料
Online ISSN : 2436-5556
不均一関数データに対する主成分分析と手書き文字データへの応用
茅野 光範堂園 剛司小西 貞則
著者情報
研究報告書・技術報告書 フリー

2007 年 2007 巻 DMSM-A603 号 p. 05-

詳細
抄録

We consider principal component analysis for multi-dimensional sparse functional data. The mixed effect model and reduced rank model have been used for analyzing the sparse functional data. In this paper, we introduce a principal component method for the multi-dimensional sparse functional data based on the reduced rank model, and model selections will be performed by using Akaike information criterion (AIC) and Bayesian information criterion (BIC). Further more,the use of the proposed method is illustrated through the analysis of human gait data and handwriting data.

著者関連情報
© 2007 著作者
前の記事 次の記事
feedback
Top