人工知能学会第二種研究会資料
Online ISSN : 2436-5556
L1 正則化法に基づくグラフィカルガウシアンモデリングについて
島村徹平井元清哉山口類宮野悟
著者情報
研究報告書・技術報告書 フリー

2007 年 2007 巻 DMSM-A701 号 p. 01-

詳細
抄録

Graphical Gaussian models have received considerable attention in various field of research such as bioinformatics. We propose a new method on the parameter estimation and model selection in graphical Gaussian models based on L1-regularization. In the proposed method, the structural learning for graphical Gaussian models is equivalent to the selection of the regularization parameters in the L1-regularization. We investigate this problem from a Bayes approach and derive an empirical Bayesian information criterion for choosing them. We analyze Arabidopsis thaliana microarray data and estimate gene networks.

著者関連情報
© 2007 著作者
次の記事
feedback
Top