人工知能学会第二種研究会資料
Online ISSN : 2436-5556
Personalized Tag Predition Boosted by BaggTaming A Case Study of the Hatena Bookmark
Toshihiro KamishimaMasahiro HamasakiShotaro Akaho
著者情報
研究報告書・技術報告書 フリー

2008 年 2008 巻 DMSM-A802 号 p. 19-

詳細
抄録

We proposed BaggTaming to boost the prediction accuracy by exploiting additional data whose class labels are less reliable. This algorithm is successfully applied to the personalized tag predicition for the data collected from the delicious. To check whether our method is generally effective, we test the data crawled from the hatena bookmark.

著者関連情報
© 2008 著作者
前の記事 次の記事
feedback
Top