人工知能学会第二種研究会資料
Online ISSN : 2436-5556
Monolithic and Partial Compilation Methods for Probabilistic Inference of Bayesian Networks using ZBDDs.
Daisuke TokoroKiyoharu HamaguchiToshinobu KashiwabaraShin-ichiMinato
著者情報
研究報告書・技術報告書 フリー

2009 年 2009 巻 DMSM-A901 号 p. 09-

詳細
抄録

This paper addresses an algorithm for probabilistic inference for Bayesian Networks (BNs). Recently, we proposed the algorithm using Zero-suppressed BDDs for compiling BNs using "separation variables" which provides compact ZBDDs. In this paper, we provide the method for constructing ZBDDs only for related parts of networks. We show some experimental results to compare our new method with the previous one. The experimental results suggest that the new method is superior to the previous method when BNs have not many ancestors for each node, and when the number of instantiations are small.

著者関連情報
© 2009 著作者
前の記事 次の記事
feedback
Top