人工知能学会第二種研究会資料
Online ISSN : 2436-5556
隠れ状態の継続時間長を考慮した確率モデルに関する調査
黒川 茂莉横山 浩之吉井 和佳麻生 英樹
著者情報
研究報告書・技術報告書 フリー

2009 年 2009 巻 DMSM-A902 号 p. 04-

詳細
抄録

Human activity data, so-called "life-log data", has underlying contexts such as sleeping, driving a car, eating. In order to analyse and predict such data, the hidden Markov model is often used. However, the duration time of the hidden context state of HMM distributes exponentially and this is not suited for modeling the above contexts. In order for modeling these context flexibly, we introduce and compare probabilistic modeling techniques of of hidden states with general duration distributions.

著者関連情報
© 2009 著作者
前の記事 次の記事
feedback
Top