人工知能学会第二種研究会資料
Online ISSN : 2436-5556
大域的クラスタ妥当性指標に基づく差分進化による距離学習
福井 健一小野 智司沼尾 正行
著者情報
研究報告書・技術報告書 フリー

2012 年 2012 巻 DOCMAS-B201 号 p. 03-

詳細
抄録

Distance metric greatly affects the performance of data mining tasks, such as clustering or classification. This paper proposes a distance metric learning based on a global cluster validity measure that evaluates inter- and intra- clusters simultaneously. The proposed method optimizes a distance transform matrix based on Maharanobis distance by utilizing an evolutional algorithm of Differential Evolution (DE). Apart from the most of distance metric learnings, our approach directly improves clustering performance and needs less auxiliary information in principle. In the experiments, we validated the search efficiency of DE, the generalization performance via cross-validation, and also showed how the distance metric learning improves data distribution via visualization by Self-Organizing Map (SOM).

著者関連情報
© 2012 著作者
前の記事 次の記事
feedback
Top