人工知能学会第二種研究会資料
Online ISSN : 2436-5556
深層学習と高頻度データを用いた株式注文状況の推定
田代 大悟和泉 潔
著者情報
研究報告書・技術報告書 フリー

2017 年 2017 巻 FIN-018 号 p. 14-

詳細
抄録

For algorithmic trading, it is important to reduce market impact and opportunity costs that closely related to market liquidity. In this work, we propose a tick-based approach to prediction of the liquidity. Our method utilizes order data encoded according to its exibility and a Long Short-Term Memory(LSTM) that predict a next order. Accuracy of the model outperforms by a large margin maximum occurrence ratio of order labels. Furthermore, we examine the embedding layer of the trained model and find out that it obtains difference and similarity between each order.

著者関連情報
© 2017 著作者
前の記事 次の記事
feedback
Top