人工知能学会第二種研究会資料
Online ISSN : 2436-5556
機械学習による中小企業の信用スコアリングモデルの構築
澤木 太郎田中 拓哉笠原 亮介
著者情報
研究報告書・技術報告書 フリー

2017 年 2017 巻 FIN-019 号 p. 20-

詳細
抄録

A credit scoring model is a useful tool for Small and Medium-sized Enterprises (SMEs) lending. In this study, we investigated methods to improve the accuracy of the scoring model using machine learning. As a result, we have shown that Gradient Boosting Decision Tree (GBDT) can obtain the highest accuracy. We found out that GBDT shows better performance than other methods especially when we use more than 10000 learning data. In addition, we demonstrated that ensemble learning can further improve accuracy. According to our simplified estimation, it was suggested that the ensemble learning can reduce the default rate by 16% compared with the conventional method.

著者関連情報
© 2017 著作者
前の記事 次の記事
feedback
Top