人工知能学会第二種研究会資料
Online ISSN : 2436-5556
低解像度の太陽全球視線方向磁場データを用いた活動領域抽出とLSTMモデルによる太陽フレア予測
山本 慎也西山 奉冶中安 哲理大原 崇
著者情報
研究報告書・技術報告書 フリー

2024 年 2024 巻 GeoSciAI-001 号 p. 05-

詳細
抄録

Solar flare prediction is essential for mitigating the adverse effects of space weather on satellites and ground-based infrastructure. This study proposes a novel method for solar flare prediction using low-resolution (512 × 512) line-of-sight magnetogram data provided by the Solar Dynamics Observatory (SDO). By utilizing low-resolution data, the proposed method aims to reduce computational costs while maintaining practical predictive accuracy. The method involves extracting active regions from the SDO's line-of-sight magnetogram, computing features such as magnetic complexity and polarity distribution, and applying a Long Short-Term Memory (LSTM) model for time-series analysis. The prediction focuses on M-class or larger flares. Using data from 2011 to 2014, the method achieved a True Skill Statistic (TSS) of 0.763, demonstrating its effectiveness. This result highlights the feasibility of using low-resolution data for efficient and accurate solar flare forecasting.

著者関連情報
© 2024 著作者
前の記事 次の記事
feedback
Top