人工知能学会第二種研究会資料
Online ISSN : 2436-5556
グラフニューラルネットワークを用いた故障予兆検知および要因推定手法
篠﨑 佑太
著者情報
研究報告書・技術報告書 フリー

2024 年 2024 巻 SMSHM-001 号 p. 18-22

詳細
抄録

Predictive maintenance is a technique to conserve maintenance and it is the key effective maintenance operations and reduced downtime. Methods for predictive maintenance based on anomaly detection using deep learning have been actively studied, but the identification of anomalous sensors remains a challenging task. In this work, we use a graph neural network for anomaly detection and estimation. The vertices of the graph correspond to the sensors, so we can interpret the relevant weights as the relationship between the sensors. We specifically used sparse graph to improve graph interpretability and we confirmed the effectiveness of the method.

著者関連情報
© 2024 著作者
前の記事 次の記事
feedback
Top