人工知能学会第二種研究会資料
Online ISSN : 2436-5556
運転条件を考慮した教師なしドメイン適応による余寿命予測
李 耕宇矢入 健久
著者情報
研究報告書・技術報告書 フリー

2024 年 2024 巻 SMSHM-001 号 p. 28-33

詳細
抄録

we propose a novel deep learning approach using Unsupervised Domain Adaptation (UDA) that considers physical operation conditions for improving RUL prediction across different domains. Our method modifies the traditional Deep Adversarial Neural Network (DANN) structure by replacing the domain classifier with multiple classifiers. The method was developed and validated based on the new NASA dataset simulated by the Commercial Modular Aero-Propulsion system simulation (N-CMAPSS) with run-to-failure data under realistic flight conditions. The proposed model architecture is compared with the traditional DANN model to demonstrate the goodness of the results and the improvements.

著者関連情報
© 2024 著作者
前の記事 次の記事
feedback
Top