人工知能学会第二種研究会資料
Online ISSN : 2436-5556
人工衛星の健全性管理における課題と対策
木村 侑尾亦 範泰堤 誠司石濱 直樹安部 賢治
著者情報
研究報告書・技術報告書 フリー

2024 年 2024 巻 SMSHM-002 号 p. 05-

詳細
抄録

The health management of artificial satellites is becoming increasingly important for enhancing operational efficiency and enabling early change detection. In this study, we systematically define and classify the complex and unique characteristics of satellite telemetry data. Furthermore, we introduce Quantile Gaussian Process Regression (Q-GPR) as an evaluation method capable of addressing these challenges. Utilizing real satellite data, we demonstrate that Q-GPR is effective in anomaly detection even for data with coarse quantization levels and datasets that involve multiple operational modes, which have been challenging for conventional methods to handle.

著者関連情報
© 2024 著作者
前の記事
feedback
Top