Abstract
An imaging system for gaseous ethanol transpired from human palm skin, based on an enzymatic reaction, was assembled and validated. This system uses a highly sensitive camera that measures gaseous ethanol concentrations as intensities of chemiluminescence from luminol’s reaction induced by alcohol oxidase (AOD) and a luminol-hydrogen peroxide-horseradish peroxidase (HRP) system. Conversion of gaseous ethanol concentrations and distributions proceed on an enzyme-immobilized mesh substrate with luminol solution in a dark box. In order to visualize ethanol transpired from human palm skin, we improved the chemiluminescence sensitivity of the imaging system with a mixture of a high-purity luminol solution of luminol sodium salt HG solution and an enhancer of eosin Y solution. The detection limit of the ethanol concentration was 4.9 ppm. This highly sensitive imaging allows successful visualization of ethanol transpired from palm skin.