Japanese Journal of Biological Psychiatry
Online ISSN : 2186-6465
Print ISSN : 2186-6619
Neural circuit mechanisms in the prefrontal cortex from social behavioral and developmental perspectives
Kazuhiko Yamamuro
Author information
JOURNAL OPEN ACCESS

2022 Volume 33 Issue 2 Pages 53-57

Details
Abstract
Juvenile social isolation reduces sociability in adulthood, but the underlying neural circuit mechanisms are poorly understood. We found that, in male mice, 2weeks of social isolation immediately following weaning leads to a failure to activate medial prefrontal cortex neurons projecting to the posterior paraventricular thalamus (mPFC→pPVT) during social exposure in adulthood. Chemogenetic or optogenetic suppression of mPFC→pPVT activity in adulthood was sufficient to induce sociability deficits without affecting anxiety‐related behaviors or preference toward rewarding food. Juvenile isolation led to both reduced excitability of mPFC→pPVT neurons and increased inhibitory input drive from low‐threshold‐spiking somatostatin interneurons in adulthood, suggesting a circuit mechanism underlying sociability deficits. Chemogenetic or optogenetic stimulation of mPFC→pPVT neurons in adulthood could rescue the sociability deficits caused by juvenile isolation. Our study identifies a pair of specific medial prefrontal cortex excitatory and inhibitory neuron populations required for sociability that are profoundly affected by juvenile social experience.
Content from these authors
© 2022 Japanese Society of Biological Psychiatry
Previous article Next article
feedback
Top