Transactions of the Japan Society for Computational Engineering and Science
Online ISSN : 1347-8826
ISSN-L : 1344-9443
Application of Trefftz Method to Steady-State Heat Conduction Problem in Functionally Gradient Materials
Yoichi IKEDAEisuke KITANorio KAMIYA
Author information
JOURNAL FREE ACCESS

2002 Volume 2002 Pages 20020014

Details
Abstract
This paper describes the application of Trefftz method to the steady-state heat conduction problem on the functionally gradient materials. Since the governing equation is given as the Poisson equation, it is difficult to apply the ordinary Trefftz method to this problem. For overcoming this difficulty, we will present the combination scheme of the Trefftz method with the computing point analysis method. The non-homogeneous term of the Poisson equation is approximated by the polynomials of the Cartesian coordinates to determine the particular solution related to the non-homogeneous term. The solution of the problem is approximated with the linear combination of the particular solution and the T-complete functions of the Laplace equation. The unknown parameters are determined so that the approximate solutions will satisfy the boundary conditions by means of the collocation method. Finally, the scheme is applied to some numerical examples.
Content from these authors
© 2002 The Japan Society For Computational Engineering and Science
Previous article Next article
feedback
Top