日本太陽エネルギー学会講演論文集
Online ISSN : 2758-478X
2024年度(令和6年度)研究発表会
会議情報

セッション:A1 太陽光発電システム(発電量予測)
1 晴天指数によるクラスタリングとニューラルネットワークを用いたPV発電量のスポット内最低値推定
*中田 湧也植田 譲崔 錦丹宇都宮 健志佐々木 潤岡田 牧山口 浩司
著者情報
会議録・要旨集 フリー

p. 1-4

詳細
抄録

As the adoption of renewable energy continues to expand, securing supply-demand balancing capacity in the power system has become a critical challenge. Solar power generation is highly dependent on weather conditions, leading to significant short-term fluctuations that can affect the stability of the power system. This study aims to assess short-term fluctuations in solar power generation to ensure sufficient adjustment capacity within the power system.

Specifically, we cluster the solar power generation data, estimated from weather data at a 5-minute granularity, based on the clearness index using the x-means method. Subsequently, we use neural networks within each cluster to predict the minimum power generation over a 30-minute period at a 1-minute granularity.

This approach provides insights into the characteristics of short-term fluctuations in solar power generation and aims to contribute to ensuring flexibility in the supply-demand adjustment market. It is expected that this method will contribute to improving the overall stability of the power system.

著者関連情報
© 一般社団法人日本太陽エネルギー学会
前の記事 次の記事
feedback
Top