JSIAM Letters
Online ISSN : 1883-0617
Print ISSN : 1883-0609
ISSN-L : 1883-0617
Small dispersion limit of momentum conservation law
Narimasa Sasa
著者情報
ジャーナル フリー

2024 年 16 巻 p. 37-40

詳細
抄録

Numerical properties of the momentum conservation law for Hamiltonian partial differential equations are investigated based on a symplectic time integration. In the nonlinear Klein–Gordon system, it is shown that the critical value of the coefficient of the dispersion term is nearly proportional to the inverse square of the total grid number. The result is consistent with the scale invariance of the equation of motion. On the other hand, in the nonlinear Schrödinger-type system, the critical value of the coefficient does not follow the scale invariance of the equation of motion.

著者関連情報
© 2024, The Japan Society for Industrial and Applied Mathematics
前の記事 次の記事
feedback
Top