2016 Volume 54Annual Issue 28PM-Abstract Pages S327
Angiogenesis, the formation of new blood vessels from pre-existing vasculature, regulates various physiological and pathophysiological processes. Here, we investigated the molecular mechanisms of angiogenesis by performing fluorescence-based bio-imaging analyses using zebrafish as a model animal and showed the potential role of intravascular pressure in regulation of angiogenesis. In severed blood vessels, the vessels located downstream of blood flow preferentially elongate to reconnect the damaged vessels comparing to the upstream vessels. Endothelial cell migration and proliferation actively occurred mainly in the downstream vessels. Since it is assumed that intravascular pressure is higher in the upstream vessels than in the downstream ones, these results suggest that intravascular pressure might regulate angiogenesis. Consistently, our preliminary in vitro data suggested that increased hydrostatic pressure inhibited vessel elongation in a 3D microfluidic angiogenesis model. These results suggest that hydrostatic pressure inhibits vessel elongation during angiogenesis by suppressing endothelial cell migration and proliferation.