生体医工学
Online ISSN : 1881-4379
Print ISSN : 1347-443X
ISSN-L : 1347-443X
周期性を考慮したホルター心電図P波検出深層学習モデルの検討
久次米 康太瀬野 宏山崎 正俊佐久間 一郎植田 典浩児玉 逸雄富井 直輝
著者情報
ジャーナル フリー

2023 年 Annual61 巻 Abstract 号 p. 179_1

詳細
抄録

【背景・目的】医師の診断支援としてこれまで心電図の自動解析が数多く検討されてきたが、心房の興奮に由来するP波は心電図に現れる変化が小さいため、変化の大きい心室波に埋もれやすく自動検出精度が低い。本研究ではP波の周期がロバストであるという電気生理学的な知見から、周期性を考慮したP波検出手法を検討した。【手法】P波の周期性を考慮した推論を行う深層学習モデルを構築するため、P波の位相θの正弦・余弦を正解ラベルとする学習を行った。患者19名190例のホルター心電図に対して、P波発生タイミングがθ=0となるように正解ラベルを作成し、双方向長・短期記憶ネットワークと特徴ピラミッドネットワークを組み合わせた深層ニューラルネットワークの学習を行った。P波検出精度を、P波の発生タイミングをセグメントとして検出する既存の深層学習モデルと比較した。【結果・考察】許容時間誤差を±0.5 sとした場合、既存手法は感度80 %、陽性適中率100 %であったのに対し、提案手法は感度93 %、陽性適中率99 %であった。平均時間誤差は既存手法と提案手法でそれぞれ16 ms (n=182) と52 ms (n=213) であった。既存手法では見逃されていた心室波中の微小な電位変化のP波が提案手法で検出される例がみられた。【結論】周期性を考慮した深層学習手法によって、ホルター心電図自動診断におけるP波検出感度を向上できる可能性が示された。

著者関連情報
© 2023 社団法人日本生体医工学会
前の記事 次の記事
feedback
Top